The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice guidelines and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice guidelines and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice guideline and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review, requiring the approval of the Commission on Quality and Safety as well as the ACR Board of Chancellors, the ACR Council Steering Committee, and the ACR Council. The practice guidelines and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline and technical standard by those entities not providing these services is not authorized.

ACR TECHNICAL STANDARD FOR DIGITAL IMAGE DATA MANAGEMENT

PREAMBLE

These guidelines are an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology cautions against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, an approach that differs from the guidelines, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations on available resources, or advances in knowledge or technology subsequent to publication of the guidelines. However, a practitioner who employs an approach substantially different from these guidelines is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.

Therefore, it should be recognized that adherence to these guidelines will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.

I. INTRODUCTION AND DEFINITION

Increasingly, medical imaging and patient information are being managed utilizing digital data during acquisition, transmission, storage, display, interpretation, and consultation. The management of these data during each of these operations may have an impact on the quality of patient care.

These standards are applicable to any system of digital image data management, from a single-modality or single-use system to a complete picture archiving and communication system (PACS).

This standard defines goals, qualifications of personnel, equipment guidelines, specifications of data manipulation and management, and quality control and quality improvement procedures for the use of digital image data that should result in high-quality radiological care.

In all cases for which an American College of Radiology (ACR) guideline or standard exists for the modality being used or the specific examination being performed, that guideline or standard will continue to apply when digital image data management systems are used. A glossary of
commonly used terminology (Appendix A) and a reference list are included.

II. GOALS

The goals of digital image data management include, but are not limited to:

A. Initial acquisition or generation and recording of accurately labeled and identified image data.

B. Transmission of data to an appropriate storage medium from which it can be retrieved for display for formal interpretation, review, and consultation.

C. Retrieval of data from available prior imaging studies to be displayed for comparison with a current study.

D. Transmission of data to remote sites for consultation, review, or formal interpretation.

E. Appropriate compression of image data to facilitate transmission or storage, without loss of clinically significant information.

F. Archiving of data to maintain accurate patient medical records in a form that:
 1. May be retrieved in a timely fashion.
 2. Meets applicable facility, state, and federal regulations.

Appropriate database management procedures applicable to all of the above should be in place.

It is anticipated that the goals of digital image data management will continue to evolve.

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

A. Physician

 1. Physicians utilizing the image data management system for official interpretation should understand the basic technology of image acquisition, transmission, manipulation, retrieval, and display, including the strengths, weaknesses, and limitations of these processes. Where appropriate, the interpreting physician

 1\(^1\) must be familiar with the principles of radiation protection, the hazards of radiation exposure to both patients and radiological personnel, and patient and personnel monitoring requirements. The physician performing the official interpretation must be responsible for the quality of the images being reviewed and understand the elements of quality control of digital image management systems.\(^2\)

 2. The physician must demonstrate qualifications as delineated in the appropriate ACR guideline or standard for the particular diagnostic modality being interpreted.

 3. The physician should have a working knowledge of those portions of the digital image chain from acquisition to display that affect image quality and potential artifact production.

B. Qualified Medical Physicist

A Qualified Medical Physicist is an individual who is competent to practice independently one or more of the subfields in medical physics. The American College of Radiology considers that certification and continuing education in the appropriate subfield(s) demonstrate that an individual is competent to practice one or more of the subfields in medical physics and to be a Qualified Medical Physicist. The ACR recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR) or for MRI, by the American Board of Medical Physics (ABMP) in magnetic resonance imaging physics.

The appropriate subfields of medical physics for this standard are Therapeutic Radiological Physics, Diagnostic Radiological Physics, Medical Nuclear Physics, and Radiological Physics.

The continuing education of a Qualified Medical Physicist should be in accordance with the ACR Practice Guideline for Continuing Medical Education (CME). 2006 (Res. 16g)

C. Radiologist Assistant

A radiologist assistant is an advanced level radiographer who is certified and registered as a radiologist assistant by the American Registry of Radiologic Technologists (ARRT) after having successfully completed an advanced academic program encompassing an ACR/ASRT (American Society of Radiologic Technologists) radiologist assistant curriculum and a radiologist-directed

\(^{1}\)The ACR Medical Legal Committee defines official interpretation as that written report (and any supplements or amendments thereto) that attach to the patient's permanent record. In healthcare facilities with a privilege delineation system, such a written report is prepared only by a qualified physician who has been granted specific delineated clinical privileges for that purpose by the facility’s governing body upon the recommendation of the medical staff.

\(^{2}\)The ACR Rules of Ethics state: "It is proper for a diagnostic radiologist to provide a consultative opinion on radiographs and other images regardless of their origin. A diagnostic radiologist should regularly interpret radiographs and other images only when the radiologist reasonably participates in the quality of medical imaging, utilization review, and matters of policy which affect the quality of patient care."
clinical preceptorship. Under radiologist supervision, the radiologist assistant may perform patient assessment, patient management and selected examinations as delineated in the Joint Policy Statement of the ACR and the ASRT titled “Radiologist Assistant: Roles and Responsibilities” and as allowed by state law. The radiologist assistant transmits to the supervising radiologists those observations that have a bearing on diagnosis. Performance of diagnostic interpretations remains outside the scope of practice of the radiologist assistant. 2006 (Res. 34)

D. Radiologic Technologist

The technologist must:

1. Be certified by the appropriate registry and/or possess unrestricted state licensure.
2. Meet the qualification requirements of any existing ACR guideline or standard for acquisition of a particular examination.
3. Be trained to properly operate those portions of the image data management system with which he/she must routinely interact.

E. Electronic/Computer Assistant

Assistants should be trained to properly operate those portions of the image data management system with which they must routinely interact.

F. Image Management Specialist

The image management specialist should be qualified to assess and provide problem-solving input, initiate repair, and coordinate system-wide maintenance programs to assure sustainable high image quality and system function. This individual should also be directly involved with any system expansion programs.

This specialist, as well as any necessary support personnel, should be available in a timely manner in case of malfunction to facilitate return to optimal system functionality.

IV. EQUIPMENT SPECIFICATIONS

Specifications for equipment utilized in digital image data management will vary depending on the individual facility's needs but in all cases should provide image quality and availability appropriate to the clinical needs whether that need be official interpretation or secondary review.

Compliance with the ACR-NEMA (National Electrical Manufacturers Association) Digital Imaging and Communications in Medicine Standard (DICOM) is strongly recommended for all new equipment acquisitions, and consideration of periodic upgrades incorporating the expanding features of that standard should be part of the ongoing quality control program. Compliance with the Radiological Society of North America (RSNA) and Healthcare Information and Management Society (HIMSS) Integrating the Healthcare Enterprise Initiative, as embodied in the available technical frameworks, is also strongly recommended for all new equipment acquisitions.

Equipment guidelines cover two basic categories of digital image data when used for rendering the official interpretation: small matrix size (e.g., computed tomography [CT], magnetic resonance imaging [MRI], ultrasound, nuclear medicine, digital fluorography, and digital angiography), and large matrix size (e.g., digital radiography and digitized radiographic films).

For both small- and large-matrix digital image data, the initial data set should provide full resolution data for processing, manipulation, and subsequent display.

A. Acquisition or Digitization

Initial image acquisition should be performed in accordance with the appropriate ACR modality or examination guideline or standard.

1. Direct image capture

The image data set produced on the digital modality in terms of both image matrix size and pixel bit depth should be transferred to the image management system. It is recommended that the DICOM standard be used. This is the most desirable mode of digital image acquisition for primary diagnosis.

2. Secondary image capture

a. Small-matrix images: Each individual image should be digitized to a matrix size as large as or larger than that of the original image on the imaging modality. The images should be digitized to a bit depth of 8 bits per pixel or greater. Film digitization or video frame grab systems conforming to the above specifications can be acceptable.

b. Large-matrix images: These images should be digitized to a matrix size corresponding to 2.5 lp/mm or greater in the original detector plane. These images should be digitized to a bit depth of 10 bits per pixel or greater.

3. General requirements

At the time of acquisition (small or large matrix), the system must have annotation capabilities for accession number, patient name, identification
number, date and time of examination, name of facility or institution of acquisition, type of examination, patient or anatomic part orientation (i.e., right, left, superior, inferior, etc.), and amount and method of data compression, and display of the total number of images acquired in the study.

The ability to record patient date of birth, sex, and a brief patient history is desirable.

B. Compression

Data compression may be performed to facilitate transmission and storage. Several methods, including both reversible and irreversible techniques, may be used under the direction of a qualified physician, with no reduction in clinical diagnostic image quality. The types and ratios of compression used for different imaging studies transmitted and stored by the system should be selected and periodically reviewed by the responsible physician to ensure appropriate clinical image quality.

C. Transmission

The type and specifications of the transmission devices used will be determined by the environment in which the studies are to be transmitted. In all cases, for official interpretation, the digital data received at the receiving end of any transmission must have no loss of clinically significant information. The transmission system shall have adequate error-checking capability.

D. Display Capabilities

Display work stations used for official interpretation and for small-matrix and large-matrix systems should be capable of the following:

1. Maximum luminance of the gray-scale monitors of at least 50 foot lamberts.
2. Selection of image sequence.
3. Accurately associating the patient and study demographic characterizations with the images of the study performed.
4. Window and level adjustment.
5. Pan functions and zoom (magnification) functions capable of meeting guidelines for display of all acquired data.
6. Rotating or flipping the images, provided labeling of patient orientation is preserved.
7. Calculating and displaying accurate linear measurements and pixel value determinations in values appropriate for the modality (e.g., Hounsfield units for CT images), if those data are available.
8. Displaying prior application of irreversible compression ratio, processing, or cropping.

9. Displaying the total number of images acquired in the study.

Care should be taken to control the lighting in the reading room to eliminate reflections in the monitor and to lower the ambient lighting level as much as is feasible.

E. Archiving and Retrieval

1. Digital imaging data management systems should provide storage capacity capable of complying with all facility, state, and federal regulations regarding medical record retention. Images stored at either a transmitting or receiving site should meet the jurisdictional requirements of the acquisition and transmitting site. Images interpreted off-site need not be stored at the receiving facility provided they are stored at the transmitting site. However, if the images are retained at the receiving site, the retention period of that jurisdiction must be met as well. The policy on record retention must be in writing.
2. Each exam data file must have an accurate corresponding patient and examination database record that includes patient name, identification number, accession number, examination date, type of examination, and facility at which the examination was performed. It is desirable that space be available for a brief clinical history.
3. Prior examinations must be retrievable from archives in a time frame appropriate to the clinical needs of the facility and medical staff.
4. Each facility should have policies and procedures for archiving and storage of digital image data equivalent to the policies that currently exist for the protection of hard-copy storage media to preserve imaging records.

F. Security

Digital image data management systems should provide network and software security protocols to protect the confidentiality of patients’ identification and imaging data. There should be measures to safeguard the data and to ensure data integrity against intentional or unintentional corruption of the data.

G. Reliability and Redundancy

Quality patient care depends on availability of the digital image data management system. Written policies and procedures must be in place to ensure continuity of care at a level consistent with those for hard-copy imaging studies and medical records within a facility or institution. This should include internal redundancy systems, backup telecommunication links, and a disaster plan.
V. DOCUMENTATION

Physicians officially interpreting examinations\(^3\) using digital image data management systems should render reports in accordance with the ACR Practice Guideline for Communication of Diagnostic Imaging Findings.

If reports are incorporated into the data management system, they should be retrievable with the same conditions of timeliness and security as the imaging data.

VI. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION CONCERNS

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education Concerns appearing elsewhere in the ACR Practice Guidelines and Technical Standards book.

Any facility using a digital image data management system must have documented policies and procedures for monitoring and evaluating the effective management, safety, and proper performance of acquisition, digitization, compression, transmission, display, archiving, and retrieval functions of the system. The quality control program should be designed to maximize the quality and accessibility of diagnostic information.

A test image, such as the SMPTE test pattern, should be captured, transmitted, archived, retrieved, and displayed at appropriate intervals, but at least monthly, to test the overall operation of the system under conditions that simulate the normal operation of the system.

As a test of the display, SMPTE pattern data files sized to occupy the full area used to display images on the monitor should be displayed. The overall SMPTE image appearance should be inspected to assure the absence of gross artifacts (e.g., blurring or bleeding of bright display areas into dark areas or aliasing of spatial resolution patterns). All display monitors should be tested at least monthly. As a dynamic range test, both the 5% and the 95% areas should be seen as distinct from the respective adjacent 0% and 100% areas.

\(^3\)The ACR Medical Legal Committee defines official interpretation as that written report (and any supplements or amendments thereto) that attach to the patient's permanent record. In healthcare facilities with a privilege delineation system, such a written report is prepared only by a qualified physician who has been granted specific delineated clinical privileges for that purpose by the facility's governing body upon the recommendation of the medical staff.

The use of digital imaging and digital image data management systems does not reduce the responsibilities for the management and supervision of radiologic examinations.

ACKNOWLEDGEMENTS

This standard was revised according to the process described in the ACR Practice Guidelines and Technical Standards book by the Guidelines and Standards Committee of the General and Pediatric Radiology Commission.

Guidelines and Standards Committee
Michael C. Beachley, MD, Chair
Kimberly Applegate, MD
Anthony Bruzzone, MD
Eric N. Faerber, MD
Edmund A. Franken, MD
Sam Kottamasu, MD
Paul A. Larson, MD
William H. McAlister, MD
William R. Reinus, MD
Arvin E. Robinson, MD
Edward Weinberger, MD

J. Bruce Hauser, MD, Chair, Commission
Theron W. Ovitt, MD, CSC

REFERENCES

10. Lou SL, Huang HK, Arenson RL. Workstation design. Image manipulation, image set handling, and

APPENDIX A

Glossary

Analog signal - a form of information transmission in which the signal varies in a continuous manner and is not limited to discrete steps.

Archive - a repository for digital medical images in a PACS, typically with a specific purpose of providing either short-term or long-term (permanent) storage of images. Erasable or nonerasable media may be utilized in an archive.

Baud - the number of events processed in 1 second, usually expressed in kilobits per second (kbps). Typical rates are 14.4 kbps, 28.8 kbps, and 56 kbps.

Bit (Binary digit) - the smallest piece of digital information that a computing device handles. It represents off or on (0 or 1). All data in computing devices are processed as bits or strings of bits.

Bit depth - the number of bits used to encode the signal intensity of each pixel of the image.

Bits per second - see throughput, baud.

Byte - a grouping of 8 bits used to represent a character or value.

Carrier - see Data carrier.

CCD (charge-coupled device) - a photoelectric device that converts light information into electronic information. CCDs are commonly used in television cameras and image scanners and consist of an array of sensors that collect and store light as a buildup of electrical charge. The resulting electrical signal can be converted into digital values and processed digitally in a computer to form an image.

CCD scanner - a device that uses a CCD sensor to convert film images into electronic data.

Clock - a component in a computer's processor that supplies an oscillating signal used for timing command execution and information handling.

Clock speed - the rate at which the clock oscillates or cycles. Clock speed is expressed in MHz, equal to 1 million clock cycles per second.

Compression ratio - the ratio of the number of bits in an original image to that in a compressed version of that image. For example, a compression ratio of 2:1 would correspond to a compressed image with one-half the number of bits of the original.

Consultation system - a teleradiology system used to determine the completeness of examinations, to discuss findings with other physicians, or for other applications with the knowledge that the original images will serve as the basis for the final official interpretation rendered at some later time by the physician responsible for that report.

Co-processor - a device in a computer to which specialized processing operations are delegated, such as mathematical computation or video display. The advantage of a co-processor is that it significantly increases processing speed.

CPU (central processing unit) - the device in a computer that performs the calculations. It executes instructions (the program) and performs operations on data.

CR (computed radiography) - a system that uses a storage phosphor plate contained in a cassette instead of a film-screen cassette. A laser beam scans the exposed plate to produce the digital data that is then converted into an image.

CRT (cathode ray tube) - the monitor or display device in the teleradiology system.

Data carrier - the signal that is used to transmit the data. If this signal is not present, there can be no data communication between modems.

Data communication - all forms of computer information exchange. Data communication may take place between two computers in the same building via a local area network (LAN), across the country via telephone, or around the world via satellite.

Data compression - methods to reduce the data volume by encoding it in a more efficient manner, thus reducing the image processing and transmission times and storage space required. These methods may be reversible or irreversible.

Data transfer rate - the speed at which information is transferred between devices, such as a scanner and a computer; between components within a device, such as
between storage and memory in a computer; or between teleradiology stations.

Dedicated line - a telephone line that is reserved for the exclusive use of one customer. It can be used 24 hours a day and usually offers better quality than a standard dial-up telephone line but may not significantly increase the performance of data communication.

DICOM (Digital Imaging and Communications in Medicine) - a standard for interconnection of medical digital imaging devices, developed and sponsored by the American College of Radiology and the National Electrical Manufacturers Association, consisting of a standard image format and a standard communications protocol.

Digital signal - a form of information transmission in which the signal varies in discrete steps, not in a continuous manner.

Digitize - the process by which analog (continuous value) information is converted into digital (discrete value) information. This process is a necessary function for computer imaging applications because visual information is inherently in analog format and most computers use only digital information.

Direct image capture - the capture or acquisition of digital image data that has been acquired in digital format by an imaging modality. The image produced from the data, regardless of the modality that produced it (CT, MRI, CR, US), should include the full spatial resolution and bit depth of the original.

dpi (dots per inch) - while in conventional radiography resolution is commonly expressed in line pairs per millimeter (lp/mm), film digitizer resolution is commonly expressed as dots (pixels) per inch.

Dynamic range - the ability of a communication or imaging system to transmit or reproduce a range of information or brightness values.

File - a set of digital data that have a common purpose, such as an image, a program, or a database.

Floppy diskette - a data storage device made of metal-coated plastic that can store computer information and can be physically transported from one place to another. The storage capacity of floppy diskettes is usually in the range of 360 K to 1.5 MB, which is too small to be of use in imaging applications.

Floppy diskette drive - the device on a computer that can read and write to floppy diskettes. It is used to import and export data.

G (giga) - stands for the number 1 billion. It is used primarily when referring to computer storage capacities; for example, 1 GB = 1 billion bytes or 1,000 megabytes.

Gray scale - the number of different shades of levels of gray that can be stored and displayed by a computer system. The number of gray levels is directly related to the number of bits used in each pixel: 6 bits = 64 gray levels, 7 bits = 128 gray levels, 8 bits = 256 gray levels, 10 bits = 1,024 gray levels, and 12 bits = 4,096 gray levels.

Gray-scale monitor - a black-to-white display with varying shades of gray, ranging from several shades to thousands, thus being suitable for use in imaging. This type of monitor also may be referred to as a monochrome display. (See also monochrome monitor)

Hard disk drive - an internal computer device used for storage of data.

Hardware - a collective term used to describe the physical components that form a computer. The monitor, CPU, disk drives, memory, modem, and other components are all considered hardware. If you can touch it, it is hardware.

HIS (hospital information system) - an integrated computer-based system to store and retrieve patient information, including laboratory and radiology reports.

IDE (integrated device electronics) - a type of interface used for hard disk drives that integrates the control electronics for the interface on the drive itself. Its purpose is to increase the speed at which information can be transferred between the hard disk and the rest of the computer.

IMACS - Image Management and Communication System.

Image - a computer’s digital representation of a physical object.

Image compression - reduction of the amount of data required to represent an image. This is accomplished by encoding the spatial and contrast information more efficiently or discarding some non-essential information or both.

Interface - the connection between two computers or parts of computers. It consists mainly of electronic circuitry.

Irreversible compression - some permanent alteration of digital image data. This is sometimes referred to as lossy.

ISDN (integrated services digital network) - a switched network with end-to-end digital connection enabling copper wiring to perform functions such as high-speed
transmission, which frequently requires higher capacity fiberoptic cable.

K (kilo) - stands for the number 1,000. It is used primarily when referring to computer storage and memory capacities: for example, 1 kbps = 1,024 bytes.

LAN (local area network) - computers in a limited area linked by cables that allow the exchange of data.

Laser film scanner - a device that uses a laser beam to convert an image on X-ray into digital image data.

Leased line - same as a dedicated line.

Lossless - see reversible compression.

Lossy - see irreversible compression.

M (mega) - stands for the number 1 million. It is used primarily when referring to computer storage and memory capacities: for example, 1 MB = 1 million bytes. 1 MB = 1,024 thousand bytes or 1,000 kbytes.

Matrix size:
Small - defined as images from CT, MR, ultrasound, nuclear medicine, and digital fluorography.
Large - defined as images from digital radiography and digitized radiographic films.

Memory - electronic circuitry within a computer that stores information.

Modem - a device that converts digital signals from a computer to pulse tone signals for transmission over telephone lines.

Monochrome monitor - a computer display in which an image is presented as different shades of gray from black to white. (see also gray-scale monitor)

Mouse - an input device that allows the computer user to point to objects on the screen and execute commands.

Operating system - software that allocates and manages the resources available within a computer system. UNIX, MS-DOS, Macintosh, and Windows are examples of operating systems.

Optical disk - a computer data storage disk used primarily for large amounts (GB) of data.

PACS - Picture Archiving and Communication System.

Peripheral - a device that is connected to a computer and performs a function. Scanners, mouse pointers, printers, keyboards, and monitors are examples of peripherals.

Phosphor - the coating on the inside of a CRT or monitor that produces light when it is struck by an electron beam.

Pixel (picture element) - the smallest piece of information that can be displayed on a CRT. It is represented by a numerical code within the computer and displayed on the monitor as a dot of a specific color or intensity. An image is composed of a large array of pixels of differing intensities or colors.

Protocol - a set of guidelines by which two different computer devices communicate with each other.

RAM (random access memory) - a type of temporary memory in a computer in which programs are run, images are processed, and information is stored. The amount of RAM that a computer requires varies widely depending on the specific application. Information stored in RAM is lost when the power is shut off.

Resolution - spatial resolution is the ability to distinguish small objects at high contrast. It is related to and in some cases limited by the pixel size. Contrast (gray scale) resolution is the ability of a system to distinguish between objects of the same size having different signal intensity. It is related to and in some cases limited by the bit depth.

Reversible compression - no alteration of original image information upon reconstruction. This is sometimes referred to as lossless.

RIS - radiology information system.

Roam and zoom - the ability to select and magnify a region in the display.

ROM (read-only memory) - a permanent memory which is an integral part of the computer. Programs and information stored in ROM are not lost when the power is removed.

SCSI (small computer systems interface) - SCSI is an interface protocol that is used to link dissimilar computer devices so that they can exchange data. SCSI interfaces are most common in image scanners and mass storage devices. This type of interface is well suited for imaging applications.

Secondary image capture - the capture in digital format of image data that originally existed in another primary format (e.g., a digital image data file on a CT scanner, or a screen-film radiographic film) through the process of video capture or film digitization.

SMPE - the Society of Motion Picture and Television Engineers.

Software - a name given to the programs or sets of programs that are executed on a computer.

Tera (T) - stands for approximately 1 trillion (10^12). It is used primarily when referring to archive storage capabilities; for example, 1 TB=1 trillion bytes, 1 million MB, or 1,000 GB.
Throughput - a measure of the amount of data that is actually being communicated, expressed in bits per second. It is related to the baud rate, but is usually somewhat less in value due to non-ideal circumstances. Typically, modems with higher baud rates can attain a higher throughput.

Video capture - the process by which images are digitized directly from the video display console of a modality, such as CT, MRI, or ultrasound. The video signal is converted to a digital signal. This process is more efficient and produces better quality images than scanning films that are produced by the same equipment.

Voxel (volume element derived from pixel) - a voxel is a three-dimensional version of a pixel. Voxels are generated by computer-based imaging systems, such as CT and MRI. Using voxels, imaging systems can be reconstructed with three-dimensional simulations of objects.

WAN (wide-area network) - a communication system that extends over large distances (covering more than a metropolitan area), often employing multiple communication link technologies such as copper wire, coaxial cable, and fiberoptic links. The cost of these WANs is presently dominated by transmission costs.

WORM (write once, read many times) - a peripheral memory device that stores information permanently.